1. a. De Morgan Dualitas
f (g,h,i) = (gh+hi)’ f(g,h,i)
= (gh+hi)’
f(g,h,i)’ = ((gh+hi)’) Dual
(g,h,i) = (g’+h’).(h’+i’)
=
(g’h’+h’i’)’ f’
(g,h,i) =
(g+h).(h+i)
= (g+h) . (h+i)
b. Tabel Kebenaran
g
|
h
|
i
|
g’
|
h’
|
i’
|
g’h’
|
h’i’
|
(g’h’+h’i’)
|
|
0
|
0
|
0
|
0
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
0
|
0
|
1
|
1
|
1
|
0
|
1
|
0
|
1
|
2
|
0
|
1
|
0
|
1
|
0
|
1
|
0
|
0
|
1
|
3
|
0
|
1
|
1
|
1
|
0
|
0
|
0
|
0
|
0
|
4
|
1
|
0
|
0
|
0
|
1
|
1
|
0
|
1
|
1
|
5
|
1
|
0
|
1
|
0
|
1
|
0
|
0
|
0
|
0
|
6
|
1
|
1
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
7
|
1
|
1
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
SOP = ∑ (0,1,4)
POS = π (2,3,5,6,7)
c. Peta Karnaugh
SOP = ∑ (0,1,4)
g\hi
|
h’i’
|
h’i
|
hi
|
hi’
|
|
00
|
01
|
11
|
10
|
||
g’
|
0
|
1
|
1
|
0
|
0
|
g
|
1
|
1
|
0
|
0
|
0
|
SOP = g’h’+h’i’
POS = π (2,3,5,6,7)
g\hi
|
hi
|
hi’
|
h’i’
|
h’i
|
|
00
|
01
|
11
|
10
|
g
|
0
|
1
|
1
|
0
|
0
|
g’
|
1
|
1
|
0
|
0
|
0
|
POS = (h’+i’).(g’+i’)
- a. Simpul : A, B, C, D, E
Sisi : e1, e2, e3, e4, e5, e6, e7, e8
b. Matriks Bertetanggaan
A
|
B
|
C
|
D
|
E
|
||
A
|
0
|
1
|
1
|
0
|
0
|
|
B
|
1
|
0
|
1
|
1
|
1
|
|
C
|
1
|
1
|
0
|
1
|
0
|
|
D
|
0
|
1
|
1
|
0
|
1
|
|
E
|
0
|
1
|
0
|
1
|
0
|
Matriks
Bersisian
e1
|
e2
|
e3
|
e4
|
e5
|
e6
|
e7
|
e8
|
|
A
|
1
|
1
|
0
|
0
|
0
|
0
|
0
|
1
|
B
|
1
|
0
|
1
|
1
|
1
|
0
|
0
|
0
|
C
|
0
|
1
|
1
|
0
|
0
|
0
|
1
|
1
|
D
|
0
|
0
|
0
|
1
|
0
|
1
|
1
|
0
|
E
|
0
|
0
|
0
|
0
|
1
|
1
|
0
|
0
|
Senarai Ketetanggaan
A : B, C D : B, C, E
B : A, C, D, E E : B, D
C : A, B, D
c. Lintasan Terpendek
contoh : A menuju D
A-B-E-D :
5+1+2 = 8
A-B-D :
5+4 = 9
A-C-B-D :
10+3+4 = 17
A-C-B-E-D : 10+3+1+2 = 16
Lintasan
Terpendek : A-B-E-D
d. Pewarnaan Graf
d (A) = 3
d (B) = 4
d (C) = 4
d (D) = 3
d (E) = 2
Urutan
Pewarnaan graf : B-C-A-D-E
Jumlah minimum warna (bilangan kromatik) = 3
A : kuning
B : merah
C : hijau
D : kuning
E : hijau
- a. Gambar
pohon merentang
b. Algoritma
Prim & Kruskal
A-B = 15 B-F
= 5 C-D = 30 E-F = 40
A-C = 10 B-E
= 45 D-E = 50
A-F = 20 B-C
= 25 D-F = 35
Algoritma Prim
1.
2.
3.
4.
5.
Algoritma Kruskal
1.
|
|||||
2.
3.
4.
5.
6.
- a. Ekspresi min 6 variabel
variabel : A, B, C, D, E, F
((A*B)/C)+((D-E)/F))
b. Gambar pohon ekspresi dengan operator
c. Infix : ((A*B)/C)+((D-E)/F))
Prefix :
1. ((*AB)/C)+((-DE)/F)
2. (/*ABC)+(/-DEF)
3. +/*ABC/-DEF
Postfix :
1. ((AB*)/C)+((DE-)/F)
2. (AB*C/)+(DE-F/)
3. AB*C/DE-F/+
d. Gambar pohon
ekspresi tanpa operator
Variabel : a, b, c, d, e, f,
g, h, i
e. In order : d b e a h f i c g
Pre
order :
1. b d e a f h i c g
2. b d e a c f h i g
3. a b d e c f h i g
Post order :
1.
d e b a h i f c g
2.
d e b a h i f g c
3.
d e b h i f g c a
f. Kode Huffman dari AABBCCCAD
Simbol
|
Kerapatan
|
Probabilita
|
Kode Huffman
|
A
|
3
|
3/9
|
0
|
B
|
2
|
2/9
|
111
|
C
|
3
|
3/9
|
10
|
D
|
1
|
1/9
|
110
|
9
Gambar pohon
untuk mementukan Kode Huffman berdasarkan 2 probabilita terkecil.
Tentukan nilai:
Kiri : 0
Kanan :
1
Jadi kode untuk
AABBCCCAD = 0 0 111 111 10 10 10 0 110
1. a. De Morgan Dualitas
f (g,h,i) = (gh+hi)’ f(g,h,i)
= (gh+hi)’
f(g,h,i)’ = ((gh+hi)’) Dual
(g,h,i) = (g’+h’).(h’+i’)
=
(g’h’+h’i’)’ f’
(g,h,i) =
(g+h).(h+i)
= (g+h) . (h+i)
b. Tabel Kebenaran
g
|
h
|
i
|
g’
|
h’
|
i’
|
g’h’
|
h’i’
|
(g’h’+h’i’)
|
|
0
|
0
|
0
|
0
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
0
|
0
|
1
|
1
|
1
|
0
|
1
|
0
|
1
|
2
|
0
|
1
|
0
|
1
|
0
|
1
|
0
|
0
|
1
|
3
|
0
|
1
|
1
|
1
|
0
|
0
|
0
|
0
|
0
|
4
|
1
|
0
|
0
|
0
|
1
|
1
|
0
|
1
|
1
|
5
|
1
|
0
|
1
|
0
|
1
|
0
|
0
|
0
|
0
|
6
|
1
|
1
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
7
|
1
|
1
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
SOP = ∑ (0,1,4)
POS = π (2,3,5,6,7)
c. Peta Karnaugh
SOP = ∑ (0,1,4)
g\hi
|
h’i’
|
h’i
|
hi
|
hi’
|
|
00
|
01
|
11
|
10
|
||
g’
|
0
|
1
|
1
|
0
|
0
|
g
|
1
|
1
|
0
|
0
|
0
|
SOP = g’h’+h’i’
POS = π (2,3,5,6,7)
g\hi
|
hi
|
hi’
|
h’i’
|
h’i
|
|
00
|
01
|
11
|
10
|
g
|
0
|
1
|
1
|
0
|
0
|
g’
|
1
|
1
|
0
|
0
|
0
|
POS = (h’+i’).(g’+i’)
- a. Simpul : A, B, C, D, E
Sisi : e1, e2, e3, e4, e5, e6, e7, e8
b. Matriks Bertetanggaan
A
|
B
|
C
|
D
|
E
|
||
A
|
0
|
1
|
1
|
0
|
0
|
|
B
|
1
|
0
|
1
|
1
|
1
|
|
C
|
1
|
1
|
0
|
1
|
0
|
|
D
|
0
|
1
|
1
|
0
|
1
|
|
E
|
0
|
1
|
0
|
1
|
0
|
Matriks
Bersisian
e1
|
e2
|
e3
|
e4
|
e5
|
e6
|
e7
|
e8
|
|
A
|
1
|
1
|
0
|
0
|
0
|
0
|
0
|
1
|
B
|
1
|
0
|
1
|
1
|
1
|
0
|
0
|
0
|
C
|
0
|
1
|
1
|
0
|
0
|
0
|
1
|
1
|
D
|
0
|
0
|
0
|
1
|
0
|
1
|
1
|
0
|
E
|
0
|
0
|
0
|
0
|
1
|
1
|
0
|
0
|
Senarai Ketetanggaan
A : B, C D : B, C, E
B : A, C, D, E E : B, D
C : A, B, D
c. Lintasan Terpendek
contoh : A menuju D
A-B-E-D :
5+1+2 = 8
A-B-D :
5+4 = 9
A-C-B-D :
10+3+4 = 17
A-C-B-E-D : 10+3+1+2 = 16
Lintasan
Terpendek : A-B-E-D
d. Pewarnaan Graf
d (A) = 3
d (B) = 4
d (C) = 4
d (D) = 3
d (E) = 2
Urutan
Pewarnaan graf : B-C-A-D-E
Jumlah minimum warna (bilangan kromatik) = 3
A : kuning
B : merah
C : hijau
D : kuning
E : hijau
- a. Gambar
pohon merentang
b. Algoritma
Prim & Kruskal
A-B = 15 B-F
= 5 C-D = 30 E-F = 40
A-C = 10 B-E
= 45 D-E = 50
A-F = 20 B-C
= 25 D-F = 35
Algoritma Prim
1.
2.
3.
4.
5.
Algoritma Kruskal
1.
|
|||||
2.
3.
4.
5.
6.
- a. Ekspresi min 6 variabel
variabel : A, B, C, D, E, F
((A*B)/C)+((D-E)/F))
b. Gambar pohon ekspresi dengan operator
c. Infix : ((A*B)/C)+((D-E)/F))
Prefix :
1. ((*AB)/C)+((-DE)/F)
2. (/*ABC)+(/-DEF)
3. +/*ABC/-DEF
Postfix :
1. ((AB*)/C)+((DE-)/F)
2. (AB*C/)+(DE-F/)
3. AB*C/DE-F/+
d. Gambar pohon
ekspresi tanpa operator
Variabel : a, b, c, d, e, f,
g, h, i
e. In order : d b e a h f i c g
Pre
order :
1. b d e a f h i c g
2. b d e a c f h i g
3. a b d e c f h i g
Post order :
1.
d e b a h i f c g
2.
d e b a h i f g c
3.
d e b h i f g c a
f. Kode Huffman dari AABBCCCAD
Simbol
|
Kerapatan
|
Probabilita
|
Kode Huffman
|
A
|
3
|
3/9
|
0
|
B
|
2
|
2/9
|
111
|
C
|
3
|
3/9
|
10
|
D
|
1
|
1/9
|
110
|
9
Gambar pohon
untuk mementukan Kode Huffman berdasarkan 2 probabilita terkecil.
Tentukan nilai:
Kiri : 0
Kanan :
1
Jadi kode untuk
AABBCCCAD = 0 0 111 111 10 10 10 0 110
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.